30 Years Learning from Radiological Accidents.

Hermenegildo Maldonado M, Emilio Ordoñez G

Comisión Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragán 779, 03020 México D. F., México.

Abstract. The summary of the radiological accidents from 1957 to 1997 occurred in Mexico is showed, including the analysis in terms of practice, and consequences. The study tries to establish the radiological knowledge of the people involved in the accident, their attitude to the safety, and retrospective review to the light of 30 years after. Nevertheless, due to the technological developments made to the equipment allow the use in a safe manner, so that the accident number has diminished in a important in a important quantity respect to the reported period, combined to the increased the radiological culture learned by the operation personnel in addition of qualification and awareness in this matter, at present is little probable that the mentioned accidents repeat now days with the same radiological affectations as those happened in the past.

1. Introduction

In Mexico the use of radiation form the nucleus begun in the fifty of the last century, such applications were in medicine and industry, with the installation of the first Cobalt -60 Teletherapy Unit and four companies of industrial radiography with Cobalt-60 and Cesium-137.

The national normative development was initiated on 1950. Nevertheless radiation protection standards come until 1979 when an institution devoted with a unique objective to respond a competent authority in the fields of nuclear safety and radiation protection.

The most of radiological accidents came from industrial radiography and begun at the same time of the use of radiation sources.

2. Accidents occurred from 1957 to 1997

The radiological accidents in the industrial and medical applications of radioactive materials begun in 1957, when one Cesium-137 source was theft, that it was recovered without any damage. The Commission (1) personnel recovery this source, in these type events was established a notification, in order, to support to the companies during the search and rescue activities, in the records form the Commission are the files with the causes, companies, sources involved, people names, doses and detriment. Therefore, the figures resulting from the analysis are 139 events, 94 in industrial radiography 11 in Nuclear Medicine, 9 in Research these are shown in the figure 1, and also the percentage of each practice.

About the consequences the results are a spectrum form no detriment to several dies and economical loss like Ciudad Juarez accident happened in 1985 with a 35 million of USA dollars. The most relevant events are summarized in figure 2.

Hermenegildo Maldonado hmaldonado@cnsns.gob.mx
Emilio Ordoñez eordonez@cnsns.gob.mx

Table 1: Events record for practice and per year from 1957 to 1997

Year	Industrial	Nuclear	Telethe_	Brachithe_	Research	Miscellany
	Radiography	Medicine	rapy	rapy		
1957	1					
1958	1					
1961	1					
1962	2					
1963	1					
1964	2					
1966	2					
1967	1					
1969	1					
1970	2					
1971	2					
1973	2					
1976	1		1			1*
1977	3					
1978	8	1			1	
1979	6					
1980	13			1	1	1*
1981	5			3		
1982	5	1			1	1**
1983	4					
1984	4		1		1	1*,1**,1***
1985	4		1			
1986	2					2*,1****
1987	0					1**
1988	4					1**
1989	2	1		1		
1990	6	2	1	1		1****
1992	1	1				
1993	1	2			1	1**
1994	2	1				
1995	4	1			1	1*****
1996	0				1	1*****
1997	1	1			2	1******
	94 (67.6%)	11(7.9%)	4(2.9%)	6(4.3%)	9(6.5%)	

^{*} Tracer

^{**} Tracer

** Well logging

*** Industrial Irradiators

**** Isotopes Production

**** Assembly of Smock Detectors

***** X Ray Analysers

 Table 2: Summary of the relevant accidents

Year	Practice	Radionuclide	Activity	Cause	Dosis	Detriment
1961	Industrial	Co-60	370 GBq	Lost	880 Gy at	Recuperation
	Radiography				gluteus	
1962	Industrial	Co-60	185 GBq	Abandoned	Exposition of	2 children, 1
	Radiography				2 children,	fetus and 2
					1 fetus and	adults died
					3 adults	and a man
						sterility
1964	Industrial	Cs-137	37 GBq	Lost and	3 OEP with	No
	Radiography			radioactivity	internal	
				leak	contamination	
1970	Industrial	Co-60	111 GBq	No fence and	2 Non OEP	
	Radiography			signs	4.78 and 12.41	
					mSv ED	
1970	Industrial	Co-60	185 GBq	Lost	3 Non OEP	The person
	Radiography				One of them	recovered
					gluteus 533	

					Gy, gonads	
					2.4 Gy and	
					hands	
					35.4 Gy	
1971	Industrial	Co-60	185 GBq	Theft	Non OEP, the	The man died
	Radiography				man robber	8 months after
					the source	
					100- 2800 Gy,	
					their wife and	
					children were	
					exposed to	
					lower values	
1973	Industrial	Cs-137	185 GBq	During the	Non OPE	Left gluteus
	Radiography			transport the	found the	and leg
				source was	source, left	amputation
				released from	gluteus 3000	
				the container	Gy	
1977	Industrial	Ir-192		Source free	OEP	Amputation of
	Radiography			In the guide	423 Gy right	4 fingers
				pipe	y 186 left hand	

1977	Industrial	lr-192	2.24 TBq	Source free	OEP	Amputation of
	Radiography			In the guide	Left hand	one finger
				pipe	52 Gy and	
					35 mGy ED	
1978	Industrial	lr-192	3.1 TBq	Source free in	OEP; 1.2 mSv	Amputationof 3
	Radiography			the guide	ED, 67.2 Gy	fingers
				pipe	hand and 1800	
					for fingers	
1978	Industrial	lr-192	Unknown	The source get	OEP; 30 Msv	Recuperation
	Radiography			down on the	ED and	
				floor	300mGy to	
					hands and 31	
					Gy to fingers	
1979	Industrial	lr-192	1.66 TBq	Source free in	OEP; 1.2 Gy	Recovery
	Radiography			the guide	Ed, 12 Gy to	
				pipe	gluteus and 36	
					Gy to hands	
1979	Industrial	lr-192	444 GBq	Source free in	OEP; 670 mGy	Recovery
	Radiography			the guide pipe	ED AND 1.66	
					Gy To hands	

1981	Brachitherapy	Ra-226	12 sources	A phycisian died and leaves the sources in a safe box	No	No
1985	Teletherapy	Co-60	15.3 TBq	Abandoned and sold to one scrap yard	Dozen OEP exposed, rebar and metallic products contaminated	Stereility of 2 people, doses For 6 people until several Gy, 35 million dollars.
1988	Well logging	Cs-137	45.5 GBq	The source was found on one road by a non OEP	3 non OEP, 74.7, 34.1, 30.7 and 12 mSv ED	No
1989	Brachitherapy	Ra-226	3 sources	Lost inner one hospital	No OEP; 120 mSv to one leg and 50mSv to gonads	No

1990	Industrial	Ir-192	740 GBq	The vehicle	No	No
	Radiography			with the		
				source		
				were fired		
1990	Teletherapy	Co-60		The source did	3 OEP; 70,	No
				not return to	26.46 and	
				the safe	93.72 mSv ED	
				position		
1991	Radiopharma	I-131		The ventilation	13 people with	No
	ceutical			system went	internal	
	Production			wrong	contamination	
1995	Industrial	Ir- 192	3.9 TBq	The guide pipe	No	No
	Radiography			fired		
1995	Industrial	Ir192	629 GBq and	The ship with	No	No
	Radiography		995 GBq	the sources		
				get underwater		
1995	Industrial	Ir-192	2.59 TBq	One Chase	No	No
	Radiography			get underwater		
				during the pas		
				of a hurricane		

1997	Analizers	Rayos X		3 No OEP	Non	Dermatitis
				were exposed	determined	recuperation
				during the		after 3 months
				reparation		
1997	Pharmaceutical	I-131	21.09 GBq	The package	No	No
	production			was send to		
				Mexico		
1997	Industrial	Ir-192	64.75 GBq	Theft of the	No	The source
	Radiography			vehicle with		was recovered
				the source		

3. Accident analysis

In a gross analysis of industrial radiography were found the initiating causes of the loss of source control or people exposition, that initiating causes are as follows:

Table 3 Initiating causes of accidents in industrial radiography

Theft/ lost	27
Cable failures	27
Security	13
Training	12
Traffic accident	3
Fence and signs	3
Container failures	3
Abandon	2
Meteorological phenomena	2
Manufacture	1
Others	1

The figures shown the failures of the directives to establish a coherent management of the radiation protection program and effective measures to radiation sources control. Because the industrial radiography practice had the higher data than the others practices the analysis will be made for it. From the table 2 it can observe that major impact in the detriment to the health was in the accidents of industrial radiography.

Therefore the authority actions were to establish a direct contact with the companies head for improve the radiation protection programs, including aspects such as, training, procedures, radiation detectors, tool for recover sources. The sanctions were of several types and some cases reach until the cancellation license.

The equipment is other important factor, such as, spare parts, refurbishment, maintenance, design changes and the oldest of the equipment from the developed countries to un-developed countries.

And the most important facto was and is the workers training based in the national regulations supported in the international recommendations, addressed to achieve the indoctrination on the radiation protection principles.

4. Development of the legal framework

January 26 1950

Law declare as national mineral reserves the uranium, thorium and the like substances from which is obtaining fissionable isotopes that could produce nuclear energy deposits.

This law didn't define the competent authority responsible to apply it.

December 19 1955

Law that create the National Commission of Nuclear Energy CNEN with the responsibilities: promotion of the nuclear energy in pacific applications, uranium exploration, mining and milling and competent authority.

January 12 1972

Law that create the National Institute of Nuclear Energy INEN essentially with the same responsibilities like CNEN.

January 26 1979

Law that create the National Commission of Nuclear Safety and Safeguards CNSNS as competent authority in nuclear safety and radiation protection

February 4 1985

Law that clarify and confirm the responsibilities of the competent authority CNSNS

November 22 1988

CNSNS issue the General Regulation of Radiation Protection

CNSNS begun the issue of radiation protection standards for specific subjects like; radiation detectors calibration, leak tests, control of contamination, radioactive wastes, intake annual limits, training,

Before of the law of 1979, the competent authority in order to establish conditions and rules for radiation protection, issued joint to the license the specific conditions on radiation protection and safety for each practice. These conditions gave to the authority a legal means to obligate to the users to improve the workers, public and environment radiation protection.

5. Conclusions

The pacific nuclear energy applications in the past needed learn from the radiological accidents for control the radiation sources in use in order to achieve that the benefits will be larger than the detriment.

6. References

- [1] Ley que declara reservas minerales nacionales los yacimientos de uranio, torio y las demás substancias de las cuales se obtengan isótopos hendibles que puedan producir energía nuclear. Diario Oficial de la Federación 26 de enero de 1950.
- [2] Ley reglamentaria del artículo 27 constitucional en materia nuclear. Diario Oficial de la Federación 19 de diciembre de 1955.
- [3] Ley reglamentaria del artículo 27 constitucional en materia nuclear. Diario Oficial de la Federación 12 de enero de 1972.
- [4] Ley Reglamentaria del artículo 27 constitucional en materia nuclear. Diario Oficial de la Federación 26 de enero de 1979.
- [5] Ley reglamentaria del artículo 27 constitucional en materia nuclear. Diario Oficial de la Federación 4 de febrero de 1985.
- [6] Reglamento general de Seguridad Radiológica. Diario Oficial de la Federación 22 de noviembre de 1988.
- [7] NOM-025/1-NUCL-1999 Requisitos para equipos de radiografía industrial Parte 1 requisitos generales. Diario Oficial de la Federación 11 de septiembre de 2000.

- [8] NOM-25/2-NUCL-1996 Requisitos para equipo de radiografía industrial Parte 2: Operación. Diario Oficial de la Federación 18 de agosto de 1997
- [9] Code of conduct on the safety and security of radioactive sources. IAEA Vienna 2007.